一、选择题
1.如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=(  )
A.14                              B.21
C.28                              D.35
[答案] C
[解析] ∵{an}是等差数列,∴a3+a4+a5=3a4=12,∴a4=4.
∴a1+a2+…+a7=7a4=28.
2.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有(  )
A.a1+a101>0                        B.a2+a100<0
C.a3+a100≤0                       D.a51=0
[答案] D
[解析] 由题设a1+a2+a3+…+a101=51a51=0,
∴a51=0.
3.等差数列{an}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为(  )
A.30                              B.27
C.24                              D.21
[答案] B